QuantoraCore
  • 🌟 Quantora Introduction
  • πŸ’Ό Key Features
  • πŸ€–AI Insights Features
  • πŸ“Š Quantora Extension Guide
    • πŸš€ Getting Started with Quantora
    • πŸ“˜UI Breakdown
    • πŸ•ΈοΈ Deep Layers & Identity Access
  • πŸ”Β PulseKey Access β€” How It Works
  • πŸ’ΌΒ Token $QNT + Access Roles
  • πŸ—ΊοΈ Quantora Roadmap
  • ⁉️FAQ
  • πŸ’» Explore the Code
  • πŸ“§ Support
  • Quant Github
  • Quant Twitter
Powered by GitBook
On this page

πŸ’» Explore the Code

⚑Main formulas

πŸ“ˆ 1. Volatility Delta (%)

Evaluates dynamic volatility relative to a stable norm:

function calculateVolatilityDelta(currentStdDev, historicMean) {
  return ((currentStdDev / historicMean) * 100).toFixed(1); // % 
}
  • currentStdDev: current standard deviation of prices

  • historicMean: average volatility over X hours

2. 🧠 Smart Wallet Signal

Analyzes the share of addresses with a high Trust Score (or previous profits):

function smartWalletSignal(activeSmartWallets, totalWallets) {
  const ratio = activeSmartWallets / totalWallets;
  if (ratio > 0.25) return "Strong signal";
  if (ratio > 0.1) return "Moderate activity";
  return "No signal";
}
  • activeSmartWallets: number of verified β€œsmart” addresses

  • totalWallets: total number of unique wallets trading the token

πŸ”„ 3. Volume Spike Index (%)

Shows abnormal volume growth over the last 15 minutes compared to previous periods:

function volumeSpikeIndex(currentVolume, avgPreviousVolume) {
  return ((currentVolume / avgPreviousVolume) * 100).toFixed(1); // % 
}

πŸ«€ 4. Token Pulse Grade (A–D)

Evaluates the "vitality" of a token based on volatility, spike index, and smart wallet behavior.

def token_pulse_grade(volatility, spike_index, smart_score):
    """
    Returns a grade (A–D) reflecting token momentum.
    A = low volatility + low spike + strong signal
    B = moderate stats
    C = high volatility or large spikes
    D = fallback grade
    """
    if volatility < 30 and spike_index < 120 and smart_score == "Strong signal":
        return "A"
    if volatility < 50 and spike_index < 200:
        return "B"
    if volatility > 50 or spike_index > 250:
        return "C"
    return "D"

πŸ”Ž 5. Whale Presence

Assesses the influence of large wallets (whales) based on token concentration and transaction activity.

def whale_presence(top_wallet_share, transaction_count):
    """
    Categorizes whale impact:
    - High Dominance: very concentrated with low activity
    - Moderate Presence: moderately concentrated
    - Low Impact: evenly distributed
    """
    if top_wallet_share > 40 and transaction_count < 10:
        return "High Dominance"
    if top_wallet_share > 25:
        return "Moderate Presence"
    return "Low Impact"

πŸ§ͺ 6. Liquidity Depth Score (0–100)

Estimates how "deep" a token’s liquidity is compared to its market cap.

def liquidity_depth_score(pool, token_market_cap):
    """
    Calculates a scaled liquidity score (0–100).
    Based on the ratio of liquidity pool size to token market cap.
    """
    ratio = pool / token_market_cap
    return min(int(ratio * 1000), 100)

πŸ§ͺ Tech Stack

  • Chrome Extension SDK

  • JavaScript / HTML / CSS

  • DexScreener API (upcoming)

  • AI-based signal evaluation (upcoming)

PreviousFAQNextπŸ“§ Support

Last updated 13 days ago